
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

 NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)

 (Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

Pampady, Thiruvilwamala (PO), Thrissur (DT), Kerala 680 588

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LAB MANUAL

CS334 NETWORK PROGRAMMING LAB

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through

excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and

Research in Engineering and Frontier Technology and to impart quality education to mould
technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to
imbibe discipline, culture and spiritually, and to mould them in to technological giants,
dedicated research scientists and intellectual leaders of the country who can spread the beams
of light and happiness among the poor and the underprivileged.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

ABOUT DEPARTMENT

⧫ Established in: 2002

⧫ Course offered: B. Tech in Computer Science and Engineering

 M.Tech in Computer Science and Engineering

 M.Tech in Cyber Security

⧫ Approved by AICTE New Delhi and Accredited by NAAC

⧫ Certified by ISO 9001:2015

⧫ Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISSION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering
Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer Science and

Engineering through lifelong learning.

PEO2: Graduates will be able to Analyse, design and development of novel Software Packages, Web

Services, System Tools and Components as per needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment

by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills,

Team work and leadership qualities.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the
cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to

complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able to
comprehend and write effective reports and design documentation, make effective
presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding

of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

13.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software

solutions for Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of

high quality System Software Tools and Efficient Web Design Models with a focus on

performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software products in the domains of Big Data Analytics, Web Applications

and Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOME

CO 1 Demonstrate network configuration tools

CO 2 Analyze the network programming skill

CO 3 Use network related commands and configuration files in Linux

Operating System.

CO 4 Develop operating system and network application programs

CO 5 Analyze network traffic using network monitoring tools.

CO 6 Identify the network trouble shooting command

CO VS PO’S AND PSO’S MAPPING

CO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO 1 3

CO 2 3

CO 3
 3 3

CO 4
 3 3

CO 5 3 2

CO 6
 2

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

PREPARATION FOR THE LABORATORY SESSION

GENERAL INSTRUCTIONS TO STUDENTS

1. Read caref ully and understand the description of the experiment in the lab

manual. You may go to the lab at an earlier date to look at the experimental

f acility and understand it better. Consult the appropriate ref erences to be

completely f amiliar with the concepts and hardware.

2 . Make sure that your observation f or previous week experiment is evaluated

by the f aculty member and you have transferred all the contents to your record

bef ore entering to the lab/workshop.

3 . At the beginning of the class, if the f aculty or the instructor f inds that a

student is not adequately prepared, they will be marked as absent and not be

allowed to perf orm the experiment.

4 . Bring necessary material needed (writing materials, record etc)

5 . Please actively participate in class and don’t hesitate to ask questions.

Please utilize the teaching assistants f ully. To encourage you to be prepared

and to read the lab manual bef ore coming to the laboratory, unannounced

questions may be asked at any time during the lab.

 PSO1 PSO2 PSO3

CO1 3 2

CO2 2 3

CO3 2 3

CO4 3

CO5 3

CO6 2

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

6. Carelessness in personal conduct or in handling equipment may result in

serious injury to the individual or the equipment.

7 . Students must f ollow the proper dress code inside the laboratory. Long hair

should be tied back.

8 . Maintain silence, order and discipline inside the lab. Don’t use cell phones

inside the laboratory.

9 . Any injury no matter how small must be reported to the instructor

immediately.

10. Check with f aculty members one week bef ore the experiment to make sure

that you have the handout f or that experiment and all the apparatus.

AFTER THE LABORATORY SESSION

1. Clean up your work area.

2 . Check with the technician bef ore you leave.

3 . Make sure you understand what kind of report is to be prepared and due

submission of record is next lab class.

MAKE-UPS AND LATE WORK

 Students must participate in all laboratory exercises as scheduled. They

must obtain permission f rom the f aculty member f or absence, which would be

granted only under justif iable circumstances. In such an event, a student must

make arrangements f or a make-up laboratory, which will be scheduled when

the time is available af ter completing one cycle. Late submission will be

awarded less mark f or record and internals and zero in worst cases.

LABORATORY POLICIES

1. Food, beverages & mobile phones are not allowed in the laboratory at any

time.

2 . Do not sit or place anything on instrument benches.

3 . Organizing laboratory experiments requires the help of laboratory

technicians and staf f. Be punctual.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING, NCERC PAMPADY.

 CS 334 NETWORK PROGRAMMING LAB MANUAL

SYLLABUS

 LIST OF EXPERIMENTS

Exp.

No

Experiment Name Page
No

1 Basics Of Network Configurations Files And Networking
Commands In Linux.

1

 2 Familiarization Of System Calls

4

 3 Implementation Of First Readers Writers Problem

7

 4 Implementation Of Second Readers Writers Problem

15

 5 Inter-Process Communication Using Pipes, Message
Queues, And Shared Memory

26

 6 Implementation Of Client-Server Communication Using
Socket Programming and TCP as Transport Layer

Protocol

32

 7 Implementation of Client-Server Communication Using
Socket Programming and UDP as Transport Layer Protocol

39

 8 Implementation of A Multi User Chat Server Using TCP as

Transport Layer Protocol

44

 9 Implementation of Concurrent Time Server Using UDP

53

 10 Implementation of Simple Mail Transfer Protocol

57

 11 Implementation of Concurrent File Server

63

 12 Design And Configuration of Network And Services

67

 P a g e | 1

Experiment no: 1 Date:

BASICS OF NETWORK CONFIGURATIONS FILES AND NETWORKING

COMMANDS IN LINUX.

Aim

To Familiarize with different configuration files and commands

Description

The important network configuration files in Linux operating systems are

1. /etc/hosts

This file is used to resolve hostnames on small networks with no DNS server. This text file contains

a mapping of an IP address to the corresponding host name in each line. This file also contains a line

specifying the IP address of the loopback device i.e, 127.0.0.1 is mapped to localhost.

A typical hosts file is as shown

127.0.0.1 localhost

127.0.1.1 anil-300E4Z-300E5Z-300E7Z

2. /etc/resolv.conf

This configuration file contains the IP addresses of DNS servers and the search domain.

A sample file is shown

DO NOT EDIT THIS FILE BY HAND -- YOUR CHANGES WILL BE OVERWRITTEN

nameserver 127.0.1.1

3. /etc/sysconfig/network

This configuration file specifies routing and host information for all network interfaces. It contains

directives that are global specific. For example if NETWORKING=yes, then /etc/init.d/network

activates network devices.

4. /etc/nsswitch.conf

This file includes database search entries. The directive specifies which database is to be searched first.

The important Linux networking commands are

 P a g e | 2

5. ifconfig

This command gives the configuration of all interfaces in the system. It can be run with an interface

name to get the details of the interface.

 ifconfig wlan0

Link encap:Ethernet HWaddr b8:03:05:ad:6b:23

inet addr:192.168.43.15 Bcast:192.168.43.255 Mask:255.255.255.0

inet6 addr: 2405:204:d206:d3b1:ba03:5ff:fead:6b23/64 Scope:Global inet6 addr:

fe80::ba03:5ff:fead:6b23/64 Scope:Link

inet6 addr: 2405:204:d206:d3b1:21ee:5665:de59:bd4e/64 Scope:Global UP BROADCAST

RUNNING MULTICAST MTU:1500 Metric:1

RX packets:827087 errors:0 dropped:0 overruns:0 frame:0 TX packets:433391 errors:0 dropped:0

overruns:0 carrier:0 collisions:0 txqueuelen:1000

RX bytes:1117797710 (1.1 GB) TX bytes:53252386 (53.2 MB)

This gives the IP address, subnet mask, and broadcast address of the wireless LAN adapter.

Also tells that it can support multicasting. If eth0 is given as the parameter, the command

gives the details of the Ethernet adapter.

6. netstat

This command command gives network status information.

Netstat -i

eth0 1500 0 0 0 0 0 0 0 0 0 BMU

lo 65536 0 12166 0 0 0 12166 0 0 0 LRU

wlan0 1500 0 827946 0 0 0 434246 0 0 0 BMRU

 P a g e | 3

As shown above, the command with -i flag provides information on the interfaces. lo stands for

loopback interface.

7. ping

This is the most commonly used command for checking connectivity.

ping www.google.com

PING www.google.com (172.217.163.36) 56(84) bytes of data.

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=1 ttl=53 time=51.4 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=2 ttl=53 time=50.3 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=3 ttl=53 time=48.5 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=4 ttl=53 time=59.8 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=5 ttl=53 time=57.8 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=6 ttl=53 time=59.2 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=7 ttl=53 time=68.2 ms

64 bytes from maa05s01-in-f4.1e100.net (172.217.163.36): icmp_seq=8 ttl=53 time=58.8 ms

--- www.google.com ping statistics ---

8 packets transmitted, 8 received, 0% packet loss, time 7004ms

rtt min/avg/max/mdev = 48.533/56.804/68.266/6.030 ms

A healthy connection is determined by a steady stream of replies with consistent times. Packet loss is

shown by discontinuity of sequence numbers. Large scale packet loss indicates problem along the path.

Result & Discussion

Familiarized with different network commands and their functionalities.

Viva Questions:

1. What is the functionality of ifconfig command

2. Ping command is used for _______

3. Network status information is given by ________

http://www.google.com/
http://www.google.com/
http://www.google.com/

 P a g e | 4

Experiment No: 2 Date:

FAMILIARIZATION OF SYSTEM CALLS

Aim

To familiarize various system calls used in network programming

Description

Some system calls used in Linux operating systems

1. ps

This command tells which all processes are running on the system when ps runs.

ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 13:55 ? 00:00:01 /sbin/init

root 2 0 0 13:55 ? 00:00:00 [kthreadd]

root 3 2 0 13:55 ? 00:00:00 [ksoftirqd/0]

root 4 2 0 13:55 ? 00:00:01 [kworker/0:0]

root 5 2 0 13:55 ? 00:00:00 [kworker/0:0H]

root 7 2 0 13:55 ? 00:00:00 [rcu_sched]

root 8 2 0 13:55 ? 00:00:00 [rcuos/0]

This command gives processes running on the system, the owners of the processes and the names of

the processes. The above result is an abridged version of the output.

2. fork

This system call is used to create a new process. When a process makes a fork system call, a new process

is created which is identical to the process creating it. The process which calls fork is called the parent

process and the process that is created is called the child process. The child and parent processes are

identical, i.e, child gets a copy of the parent's data space, heap and stack, but have different physical

address spaces. Both processes start execution from the line next to fork. Fork returns the process id of

the child in the parent process and returns 0 in the child process.

 P a g e | 5

#include<stdio.h>

void main()

{

int pid;

pid = fork();

if(pid > 0)

{

printf (“ Iam parent\n”);

}

else

{

printf(“Iam child\n”);

}

}

The parent process prints the first statement and the child prints the next statement.

3. exec

New programs can be run using exec system call. When a process calls exec, the process is completely

replaced by the new program. The new program starts executing from its main function.

A new process is not created, process id remains the same, and the current process's text, data, heap, and

stack segments are replaced by the new program. exec has many flavours one of which is execv. execv

takes two parameters. The first is the pathname of the program that is going to be executed. The second

is a pointer to an array of pointers that hold the addresses of arguments. These arguments are the

command line arguments for the new program.

4. wait

When a process terminates, its parent should receive some information regarding the process like the

process id, the termination status, amount of CPU time taken etc. This is possible only if the parent

process waits for the termination of the child process. This waiting is done by calling the wait system

call. When the child process is running, the parent blocks when wait is called. If the child terminates

normally or abnormally, wait immediately returns with the termination status of the child. The wait

system call takes a parameter which is a pointer to a location in which the termination status is stored.

5. exit

 P a g e | 6

When exit function is called, the process undergoes a normal termination.

6. open

This system call is used to open a file whose pathname is given as the first parameter of the function.

The second parameter gives the options that tell the way in which the file can be used.

open(filepathname , O_RDWR);

This causes the file to be read or written. The function returns the file descriptor of the file.

7. read

This system call is used to read data from an open file.

read(fd, buffer, sizeof(buffer));

The above function reads sizeof(buffer) bytes into the array named buffer. If the end of file is

encountered, 0 is returned, else the number of bytes read is returned.

8. write

Data is written to an open file using write function.

write(fd, buffer, sizeof(buffer));

System calls for network programming in Linux

1. Creating a socket

int socket (int domain, int type, int protocol);

This sytem call creates a socket and returns a socket descriptor. The domain parameter specifies a

communication domain; this selects the protocol family which will be used for communication. These

families are defined in <sys/socket.h>. In this program the AF_INET family is used. The type

parameter indicates the communication semantics. SOCK_STREAM is used for tcp connection while

SOCK_DGRAM is used for udp connection. The protocol parameter specifies the protocol used and is

always 0. The header files used are <sys/types.h> and <sys/socket.h>.

Result & Discussion

Familiarized with the different system calls and their functionalities.

Viva Questions:

1. What is the functionality of socket system call

2. Fork system call is used for _______

3. Open system call is used for _____

 P a g e | 7

Experiment No:3 Date:

IMPLEMENTATION OF FIRST READERS WRITERS PROBLEM

Aim

To implement the first readers writers problem

 Description

Readers writers problem is a synchronization problem. There are two types of processes:- writers and

readers which are sharing a common resource. A reader process can share the process with other readers

but not writers. A writer process requires exclusive access to the resource. A very good example is a file

being shared among a set of processes. As long as a reader holds the resource and there are new readers

arriving, any writer must wait for the resource to become available.

The first reader accessing the resource must compete with any writers, but once a writer succeeds the

other readers can pass directly into the critical section provided that at least one reader is still in the

critical section. The readCount variable gives the number of readers in the critical section. Only when

the last reader leaves the critical section can the writers enter the critical section one at a time which will

based on writeBlock variable.

Sample Code:

The sample code for the readers writers problem is given below

reader() {

while(TRUE) {

<other computing>

P(mutex);

readCount = readCount +1;

if(readCount == 1)

P(writeBlock);

V(mutex);

/* critical section */

access resource

P(mutex);

readCount = readCount – 1;

if(readCount == 0)

V(writeBlock);

V(mutex);

}

 P a g e | 8

}

writer() {

while(TRUE) {

<other computing>;

P(writeBlock);

/* critical section */

access resource

 V(writeBlock);

}

}

The above algorithm is implemented using threads. Mutex and writeBlock are two semaphores. The

first semaphore guards the readCount variable while the latter protects the critical section where the

resource is shared.

 P a g e | 9

 Program

#include<stdio.h>

#include<pthread.h>

#include<semaphore.h>

#include<stdlib.h>

void * reader (void *);

void * writer (void *);

sem_t mutex;

sem_t writeBlock;

int readCount =0;

main(int argc, char * argv[])

{

int i, j, k;

int N_readers, N_writers;

int readers_num[100], writers_num[100];

pthread_t tid_readers[100], tid_writers[100];

printf("Enter the number of readers:");

scanf("%d", &N_readers);

printf("Enter the number of writers:");

scanf("%d", &N_writers);

for(k =0; k < N_readers; k++)

readers_num[k] = k;

 for(k =0; k < N_writers; k++)

writers_num[k] = k;

if(sem_init(&mutex, 0, 1) < 0)

{

perror("Could not init semaphore mutex");

exit(1);

}

if(sem_init(&writeBlock, 0, 1) < 0)

{

perror("Could not init semaphore writeBlock"); exit(1);
}

 P a g e | 10

for(i =0; i < N_readers; i++)

{

if(pthread_create(&tid_readers[i], NULL, reader, &readers_num[i]))

{

perror("could not create reader thread");

exit(1);

}

}

for(j=0; j < N_writers; j++)

{

if(pthread_create(&tid_writers[j], NULL, writer, &writers_num[j]))

{

perror("could not create writer thread");

exit(1);

}

}

for (i =0; i < N_readers; i++)

{

pthread_join(tid_readers[i], NULL);

}

for (j=0; j < N_writers; j++)

{

pthread_join(tid_writers[j], NULL);

}

sem_destroy(&mutex);

 sem_destroy(&mutex);

}

void * reader (void* param)

{

int i = *((int *) param);

while(1)

{

sleep(1);

if(sem_wait(&mutex) < 0)

 P a g e | 11

{

perror("cannot decrement the semaphore mutex");

exit(1);

}

readCount = readCount + 1;

if(readCount == 1)

{

if(sem_wait(&writeBlock) < 0)

{

perror("cannot decrement the semaphore writeBlock");

exit(1);

}

}

if(sem_post(&mutex) < 0)

{

perror("cannot increment semaphore mutex");

exit(1);

}

// READ RESOURCES

printf("READER %d is READING \n", i);

sleep(1);

if(sem_wait(&mutex) < 0)

{

perror("cannot decrement the semaphore mutex");

exit(1);

 }

readCount = readCount - 1;

if(readCount == 0)

{

if(sem_post(&writeBlock) < 0)

{

perror("cannot increment semaphore mutex");

exit(1);

}

}

 P a g e | 12

if(sem_post(&mutex) < 0)

{

perror("cannot increment semaphore mutex");

exit(1);

}

}

perror("cannot increment semaphore writeBlock");

exit(1);

}

}

}

 P a g e | 13

Output

Enter the number of readers:5

Enter the number of writers:3

READER 0 is READING

READER 1 is READING

READER 2 is READING

READER 4 is READING

READER 3 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

WRITER 2 IS WRITING

READER 2 is READING

READER 3 is READING

READER 0 is READING

READER 1 is READING

READER 4 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

WRITER 2 IS WRITING

READER 2 is READING

READER 4 is READING

READER 3 is READING

READER 1 is READING

READER 0 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

WRITER 2 IS WRITING

READER 4 is READING

READER 3 is READING

READER 0 is READING

READER 1 is READING

READER 2 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

WRITER 2 IS WRITING

READER 1 is READING

READER 2 is READING

READER 0 is READING

READER 4 is READING

READER 3 is READING

 P a g e | 14

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Define process and thread

2. Join function in thread is used for ______

3. Mutex is used for _____

 P a g e | 15

Experiment No: 4 Date:

IMPLEMENTATION OF SECOND READERS WRITERS PROBLEM

Aim

To implement the second readers writers problem

Description

In the first readers writers problem, readers can dominate the resource and it will not be possible for a

writer to access the resource. In order to give preference to writers, it is necessary to prevent a subsequent

reader process from gaining access to the shared resource till the writer accesses the shared resource and

releases it. An algorithm to achieve this task is given below (Gary Nutt).

Here a stream of readers can enter the critical section till a writer arrives. When a writer arrives, it takes

access of the resource after all existing readers leave the critical section. When the first writer arrives, it

will obtain the readBlock semaphore. Then it blocks on the writeBlock semaphore, waiting for all readers

to clear the critical section. The next reader to arrive will obtain the writePending semaphore and then

block on the readBlock semaphore. If another writer arrives during this time, it will block on the

writeBlock semaphore. If a second reader arrives, it will block on the writePending semaphore.

Sample Code

reader()

{ while(TRUE) {

<other computing>

P(writePending);

P(readBlock);

P(mutex1);

readCount = readCount +1;

if(readCount == 1)

P(writeBlock);

V(mutex1);

V(readBlock);

V(writePending);

/* critical section */

access resource

 P a g e | 16

P(mutex1);

readCount = readCount – 1;

if(readCount == 0)

V(writeBlock);

V(mutex1);

}

}

writer() {

while(TRUE) {

<other computing>;

P(mutex2);

writeCount = writeCount + 1;

if(writeCount == 1)

P(readBlock);

V(mutex2);

P(writeBlock);

/* critical section */

access resource

V(writeBlock);

P(mutex2);

writeCount = writeCount - 1;

if(writeCount == 0)

V(readBlock);

V(mutex2);

}

}

The above algorithm is implemented using threads. Mutex1, mutex2, writeBlock, readBlock and

writePending are the semaphores used.

 P a g e | 17

Program

#include<stdio.h>

#include<pthread.h>

#include<semaphore.h>

#include<stdlib.h>

void * reader (void *);

void * writer (void *);

sem_t mutex1, mutex2;

sem_t writeBlock;

sem_t readBlock;

sem_t writePending;

int readCount =0;

int writeCount =0;

main(int argc, char * argv[])

{

int i, j, k;

int N_readers, N_writers;

int readers_num[100], writers_num[100];

pthread_t tid_readers[100], tid_writers[100];

printf("Enter the number of readers:");

scanf("%d", &N_readers);

printf("Enter the number of writers:");

scanf("%d", &N_writers);

for(k =0; k < N_readers; k++)

 P a g e | 18

readers_num[k] = k;

for(k =0; k < N_writers; k++)

writers_num[k] = k;

if(sem_init(&mutex1, 0, 1) < 0)

{

perror("Could not init semaphore mutex1");

exit(1);

}

if(sem_init(&mutex2, 0, 1) < 0)

{

perror("Could not init semaphore mutex2");

exit(1);

}

if(sem_init(&writeBlock, 0, 1) < 0)

{

perror("Could not init semaphore writeBlock");

exit(1);

}

if(sem_init(&readBlock, 0, 1) < 0)

{

perror("Could not init semaphore readBlock");

exit(1);

}

if(sem_init(&writePending, 0, 1) < 0)

{

perror("Could not init semaphore writePending");

exit(1);

 P a g e | 19

}

for(i =0; i < N_readers; i++)

{

if(pthread_create(&tid_readers[i], NULL, reader, &readers_num[i]))

{

perror("could not create reader thread");

exit(1);

}

}

for(j=0; j < N_writers; j++)

{

if(pthread_create(&tid_writers[j], NULL, writer, &writers_num[j]))

{

perror("could not create writer thread");

exit(1);

}

}

for (i =0; i < N_readers; i++)

{

pthread_join(tid_readers[i], NULL);

}

for (j=0; j < N_writers; j++)

{

pthread_join(tid_writers[j], NULL);

}

sem_destroy(&mutex1);

 P a g e | 20

sem_destroy(&mutex2);

sem_destroy(&readBlock);

sem_destroy(&writeBlock);

sem_destroy(&writePending);

}

void * reader (void* param)

{

int i = *((int *) param);

while(1)

{

sleep(1);

if(sem_wait(&writePending) < 0)

{

perror("cannot decrement the semaphore writePending");

exit(1);

}

if(sem_wait(&readBlock) < 0)

{

perror("cannot decrement the semaphore readBlock");

exit(1);

}

if(sem_wait(&mutex1) < 0)

{

perror("cannot decrement the semaphore mutex1");

exit(1);

}

readCount = readCount + 1;

if(readCount == 1)

 P a g e | 21

{

if(sem_wait(&writeBlock) < 0)

{

perror("cannot decrement the semaphore writeBlock");

exit(1);

}

}

if(sem_post(&mutex1) <0)

{

perror("cannot increment semaphore mutex1");

exit(1);

}

if(sem_post(&readBlock) <0)

{

perror("cannot increment semaphore readBlock");

exit(1);

}

if(sem_post(&writePending) <0)

{

perror("cannot increment semaphore writePending");

exit(1);

}

// READ RESOURCES

printf("READER %d is READING \n", i);

sleep(1);

if(sem_wait(&mutex1) < 0)

{

 P a g e | 22

perror("cannot decrement the semaphore mutex");

exit(1);

}

readCount = readCount - 1;

if(readCount == 0)

{

if(sem_post(&writeBlock) < 0)

{

perror("cannot increment semaphore mutex");

exit(1);

}

}

if(sem_post(&mutex1) < 0)

{

perror("cannot increment semaphore mutex");

exit(1);

}

}

}

void * writer (void * param)

{

int i = *((int *) param);

while(1)

{

sleep(1);

if(sem_wait(&mutex2) < 0)

{

perror("cannot decrement the semaphore mutex2");

 P a g e | 23

exit(1);

}

writeCount = writeCount +1;

if(writeCount == 1)

{

if(sem_wait(&readBlock) < 0)

{

perror("cannot decrement the semaphore readBlock");

exit(1);

}

}

if(sem_post(&mutex2) < 0)

{

perror("cannot increment semaphore mutex2");

exit(1);

}

if(sem_wait(&writeBlock) < 0)

{

perror("cannot decrement the semaphore writeBlock");

exit(1);

}

// WRITE RESOURCES

printf("WRITER %d IS WRITING \n", i);

if(sem_post(&writeBlock) < 0)

{

perror("cannot increment semaphore writeBlock");

 P a g e | 24

exit(1);

}

if(sem_wait(&mutex2) < 0)

{

perror("cannot decrement the semaphore mutex2");

exit(1);

}

writeCount = writeCount - 1;

if(writeCount == 0)

{

if(sem_post(&readBlock) < 0)

{

perror("cannot increment semaphore readBlock");

exit(1);

}

}

if(sem_post(&mutex2) < 0)

{

perror("cannot increment semaphore mutex2");

exit(1);

}

}

}

Output

 P a g e | 25

Enter the number of readers:3

Enter the number of writers:2

READER 2 is READING

READER 0 is READING

READER 1 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

READER 2 is READING

READER 0 is READING

READER 1 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

READER 2 is READING

READER 0 is READING

READER 1 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

READER 2 is READING

READER 0 is READING

READER 1 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

READER 2 is READING

READER 0 is READING

READER 1 is READING

WRITER 0 IS WRITING

WRITER 1 IS WRITING

READER 2 is READING

READER 1 is READING

READER 0 is READING

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Define Readers writer problem

2. What is the functionality of perror

3. Define Semaphore

 P a g e | 26

Experiment No: 5 Date:

INTER-PROCESS COMMUNICATION USING PIPES, MESSAGE QUEUES,

AND SHARED MEMORY

 Aim:

To communicate between two processes using pipes and message queues.

Description:

In this experiment a pipe is used to connect a client with the server. The client reads the name of a file

from the standard input. It then writes the name of the file on to the pipe. The server reads the file from

the read end of the pipe. After that, the server opens the file and reads the contents of the file line by

line. Each line that it reads is sent to the client and written to the standard output. The data is transferred

using the message structure. It has a header, which gives the length of the message and the type of the

message which is a positive integer. The data is carried in an array within the message structure. The

data flow through pipes is as shown in the figure.

Algorithm

1. Create pipe 1 (fd1[0], fd1[1])

2. Create pipe 2 (fd2[0], fd2[1])

3. Fork a child process

4. Parent closes read end of pipe 1 (fd1[0])

5. Parent closes write end of pipe 2 (fd2[1])

6. Child closes write end of pipe 1 (fd1[1])

7. Child closes read end of pipe 2 (fd2[0])

Parent process (client process)

1. Read the filename from the standard input into the data portion of the message

2. Construct the message structure

3. Write the message to pipe 1

4. Read the message from the client on pipe2 and write to the standard output

Child process (server process)

1. Read the message sent by the client from pipe 1

2. Open the file

3. If there is an error, send an error message to the client

4. Otherwise, read each line from the file and send it as a message to the client on pipe 2

 P a g e | 27

Program

#include<stdio.h>

#include<sys/types.h>

#include<unistd.h>

#include<string.h>

#include “pipe.h”

void client(int, int);

void server(int, int);

int main(int argc, char ** argv)

{

int fd1[2], fd2[2]; // file descriptors for pipes

pid_t childpid;

// creation of pipes

if(pipe(fd1) < 0)

{

perror(“pipe creation error”);

exit(1);

}

if(pipe(fd2) < 0)

{

perror(“pipe creation error”);

exit(1);

}

if((childpid = fork()) < 0)

{

perror(“fork error”);

exit(1);

}

elseif(childpid == 0) // child process (server process)

{

close(fd2[0]); // child closes the read end of pipe 2

close(fd1[1]); // child closes the write end of pipe 1

server(fd1[0], fd2[1]);

exit(0);

}

else // parent process (client process)

{

close(fd1[0]);

close(fd2[1]);

 P a g e | 28

client(fd2[0], fd1[1]);

if(waitpid(childpid, NULL,0) < 0)

{

perror(“waitpid error”);

exit(1);

}

exit(0);

}

}

void client(int readfd, int writefd)

{

int length;

ssize_t n;

struct message mesg;

printf(“Give the name of the file\n”);

fgets(mesg.message_data, MAXMESSAGEDATA, stdin);

length = strlen(mesg.message_data);

if(mesg.message_data[length -1] == '\n')

length--;

mesg.message_length = length;

mesg.message_type = 1;

// write message to the pipe

write(writefd, &mesg, MESGHDRSIZE + mesg.message_length);

// read from pipe and write to the standard output

while(1)

{

if(n = read(readfd, &mesg, MESGHDRSIZE)) == -1)

{

perror(“read error”);

exit(1);

}

if(n!= MESGHDRSIZE)

{

fprintf(stderr, “header size not same”);

exit(1);

}

 P a g e | 29

length = mesg.message_length;

if(length == 0) break;

n = read(readfd, mesg.message_data, length);

write(STDOUT_FILENO, mesg.message_data, n);

}

}

void server(int readfd, int writefd)

{

FILE * fp;

ssize_t n;

struct message mesg;

size_t length;

mesg.message_type = 1;

n = read(readfd, &mesg, MESGHDRSIZE);

if(n!=MESGHDRSIZE)

{

fprintf(stderr, “header size not same \n”);

exit(1);

}

length =mesg.message_length;

n = read(readfd, mesg.message_data, length);

mesg.message_data[n] = '\0';

if((fp = fopen(mesg.message_data, “r”)) ==NULL)

{

snprintf(mesg.message_data + n, sizeof(mesg.message_data) -n, “:cant open\n”);

mesg.message_length = strlen(mesg.message_data);

write(writefd, &mesg, MESGHDRSIZE + mesg.message_length);

}

else

{

while(fgets(mesg.message_data, MAXMESSAGEDATA, fp) != NULL)

{

mesg.message_length = strlen(mesg.message_data);

mesg.message_type = 1;

write(writefd, &mesg, MESGHDRSIZE + mesg.message_length);

}

fclose(fp);

}

mesg.message_length = 0;

 P a g e | 30

write(writefd, &mesg, MESGHDRSIZE + mesg.message_length);

}

Header file

#ifndef _PIPE

#define _PIPE

#include<stdio.h>

#include<limits.h>

#define MAXMESSAGEDATA(PIPE_BUF -2*sizeof(long)) // PIPE_BUF is

the maximum amount of data that can be written to a pipe

#define MESGHDRSIZE (sizeof(struct message) – MAXMESSAGEDATA)

struct message {

};

long message_length;

long message_type;

char message_data[MAXMESSAGEDATA];

#endif

Output

Using pipes send a filename from a client to a server. Open the file in the server and send the contents

 of the file to the client using pipe and display it on the console.

 P a g e | 31

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Define IPC

2. Explain the concept of shared memory

3. Pipe is used for ____

 P a g e | 32

Experiment No: 6 Date:

IMPLEMENTATION OF CLIENT-SERVER COMMUNICATION USING

SOCKET PROGRAMMING AND TCP AS TRANSPORT LAYER PROTOCOL

Aim:

Client sends a string to the server using tcp protocol. The server reverses the string and returns it to

the client, which then displays the reversed string.

Description:

Steps for creating a TCP connection by a client are:

1. Creation of client socket

int socket(int domain, int type, int protocol);

This function call creates a socket and returns a socket descriptor. The domain parameter specifies a

communication domain; this selects the protocol family which will be used for communication. These

families are defined in <sys/socket.h>. In this program, the domain AF_INET is used. The socket has

the indicated type, which specifies the communication semantics. SOCK_STREAM type provides

sequenced, reliable, two-way, connection based byte streams. The protocol field specifies the protocol

used. We always use 0. If the system call is a failure, a -1 is returned. The header files used are

sys/types.h and sys/socket.h.

2. Filling the fields of the server address structure.

The socket address structure is of type struct sockaddr_in.

 struct sockaddr_in
{

};

u_short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8]; /*unused, always zero*/

struct in_addr {

};

u_long s_addr

The fields of the socket address structure are

sin_family which in our case is AF_INET

sin_port which is the port number where socket binds

sin_addr which is the IP address of the server machine

 P a g e | 33

Example

struct sockaddr_in servaddr;

servaddr.sin_family = AF_INET;

servaddr.sin_port = htons(port_number);

Why htons is used ?. Numbers on different machines may be represented differently (big-endian

machines and little-endian machines). In a little-endian machine the low order byte of an integer appears

at the lower address; in a big-endian machine instead the low order byte appears at the higher address.

Network order, the order in which numbers are sent on the internet is big-endian. It is necessary to ensure

that the right representation is used on each machine. Functions are used to convert from host to network

form before transmission- htons for short integers and htonl for long integers.

The value for servaddr.sin_addr is assigned using the following function

inet_pton(AF_INET, “IP_Address”, &servaddr.sin_addr);

The binary value of the dotted decimal IP address is stored in the field when the function returns.

3. Binding of the client socket to a local port

This is optional in the case of client and we usually do not use the bind function on the client side.

4. Connection of client to the server

A server is identified by an IP address and a port number. The connection operation is used on the

client side to identify and start the connection to the server.

int connect(int sd, struct sockaddr * addr, int addrlen);

sd – file descriptor of local socket

addr – pointer to protocol address of other socket

addrlen – length in bytes of address structure

The header files to be used are sys/types.h and sys/socket.h

It returns 0 on sucess and -1 in case of failure.

5. Reading from socket

In the case of TCP connection reading from a socket can be done using the read system call

int read(int sd, char * buf, int length);

6. writing to a socket

In the case of TCP connection writing to a socket can be done using the write system call

 P a g e | 34

int write(int sd, char * buf, int length);

7. closing the connection

The connection can be closed using the close system call

int close(int sd);

Steps for TCP Connection for server

1. Creating a listening socket

int socket(int domain, int type, int protocol);

This system call creates a socket and returns a socket descriptor. The domain field used is AF_INET.

The socket type is SOCK_STREAM. The protocol field is 0. If the system call is a failure, a -1 is

returned. Header files used are sys/types.h and sys/socket.h.

2. Binding to a local port

int bind(int sd, struct sockaddr * addr, int addrlen);

This call is used to specify for a socket the protocol port number where it will wait for messages. A call

to bind is optional on the client side, but required on the server side. The first field is the socket descriptor

of local socket. Second is a pointer to protocol address structure of this socket. The third is the length in

bytes of the structure referenced by addr. This system call returns an integer. It is 0 for success and

-1 for failure. The header files are sys/types.h and sys/socket.h.

3. Listening on the port

The listen function is used on the server in the connection oriented communication to prepare a socket

to accept messages from clients.

int listen(int fd, int qlen);

fd – file descriptor of a socket that has already been bound

qlen – specifies the maximum number of messages that can wait to be processed by the server while

the server is busy servicing another request. Usually it is taken as 5. The header files used are sys/types.h

and sys/socket.h. This function returns 0 on success and -1 on failure.

4. Accepting a connection from the client

The accept function is used on the server in the case of connection oriented communication to accept a

connection request from a client.

int accept(int fd, struct sockaddr * addressp, int * addrlen);

 P a g e | 35

The first field is the descriptor of server socket that is listening. The second parameter addressp points

to a socket address structure that will be filled by the address of calling client when the function returns.

The third parameter addrlen is an integer that will contain the actual length of address structure of client.

It returns an integer that is a descriptor of a new socket called the connection socket. Server sockets send

data and read data from this socket. The header files used are sys/types.h and sys/socket.h.

Algorithm

Client

1. Create socket

2. Connect the socket to the server

3. Read the string to be reversed from the standard input and send it to the server

Read the matrices from the standard input and send it to server using socket

4. Read the reversed string from the socket and display it on the standard output

Read product matrix from the socket and display it on the standard output

5. Close the socket

Server

1. Create listening socket

2. bind IP address and port number to the socket

3. listen for incoming requests on the listening socket

4. accept the incoming request

5. connection socket is created when accept returns

6. Read the string using the connection socket from the client

7. Reverse the string

8. Send the string to the client using the connection socket

9. close the connection socket

10. close the listening socket

 P a g e | 36

Client Program

import java.io.*;

import java.net.*;

class TCPCLIENT

{

public static void main(String args[])

{

try

{

Socket c=new Socket("127.0.0.1",9696);

BufferedReader br=new BufferedReader(new InputStreamReader(c.getInputStream()));

DataInputStream in=new DataInputStream(System.in);

while(true)

{

PrintWriter out=new PrintWriter(c.getOutputStream(),true);

System.out.println("\n enter the data to be send to server \n");

String str=in.readLine();

out.println(str);

String sw=br.readLine();

System.out.println("\n client received \n" +sw);

}}

catch(Exception e)

{}

}}

Server Program

import java.io. *;

import java.net. *;
class TCPSERVER
{
public static void main(String args[])
{

try
{
ServerSocket se=new ServerSocket(9696);
Socket c=se.accept();
BufferedReader br=new BufferedReader(new InputStreamReader(c.getInputStream()));
DataInputStream in=new DataInputStream(System.in);

while(true)
{
PrintWriter out=new PrintWriter(c.getOutputStream(),true);
String sw=br.readLine();
System.out.println(" \n senderreceived data \n" +sw);

System.out.println("\n enter the data to client \n");
String str=in.readLine();
out.println(str);
}}
catch(Exception e)

{}}}

 P a g e | 37

Output

Server

Client

 P a g e | 38

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain TCP Protocol

2. What is the functionality of connect system call

3. Server Socket is used for __

 P a g e | 39

Experiment No :7 Date:

IMPLEMENTATION OF CLIENT-SERVER COMMUNICATION USING

SOCKET PROGRAMMING AND UDP AS TRANSPORT LAYER PROTOCOL

Aim:

Client sends two matrices to the server using udp protocol. The server multiplies the matrices and

sends the product to the client, which then displays the product matrix.

Description:

Steps for transfer of data using UDP

1. Creation of UDP socket

The function call for creating a UDP socket is

int socket(int domain, int type, int protocol);

The domain parameter specifies a communication domain; this selects the protocol family which will be

used for communication. These families are defined in <sys/socket.h>. In this program, the domain

AF_INET is used. The next field type has the value SOCK_DGRAM. It supports datagrams

(connectionless, unreliable messages of a fixed maximum length). The protocol field specifies the

protocol used. We always use 0. If the socket function call is successful, a socket descriptor is returned.

Otherwise -1 is returned. The header files necessary for this function call are sys/types.h and

sys/socket.h.

2. Filling the fields of the server address structure.

The socket address structure is of type struct sockaddr_in.

struct sockaddr_in {

};

u_short sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero[8]; /*unused, always zero*/

struct in_addr {

};

u_long s_addr

 The fields of the socket address structure are

sin_family which in our case is AF_INET

sin_port which is the port number where socket binds

sin_addr is used to store the IP address of the server machine and is of type struct in_addr

 P a g e | 40

The header file that is to be used is netinet/in.h

The value for servaddr.sin_addr is assigned using the following function

inet_pton(AF_INET, “IP_Address”, &servaddr.sin_addr);

The binary value of the dotted decimal IP address is stored in the field when the function returns.

3. Binding of a port to the socket in the case of server

This call is used to specify for a socket the protocol port number where it will wait for messages. A

call to bind is optional in the case of client and compulsory on the server side.

int bind(int sd, struct sockaddr* addr, int addrlen);

The first field is the socket descriptor. The second is a pointer to the address structure of this socket. The

third field is the length in bytes of the size of the structure referenced by addr. The header files are

sys/types.h and sys/socket.h. This function call returns an integer, which is 0 for success and -1 for

failure.

4. Receiving data

ssize_t recvfrom(int s, void * buf, size_t len, int flags, struct sockaddr * from, socklen_t *

fromlen);

The recvfrom calls are used to receive messages from a socket, and may be used to receive data on a

socket whether or not it is connection oriented. The first parameter s is the socket descriptor to read

from. The second parameter buf is the buffer to read information into. The third parameter len is the

maximum length of the buffer. The fourth parameter is flag. It is set to zero. The fifth parameter from

is a pointer to struct sockaddr variable that will be filled with the IP address and port of the

orginating machine. The sixth parameter fromlen is a pointer to a local int variable that should be

initialized to sizeof(struct sockaddr). When the function returns, the integer variable that fromlen

points to will contain the actual number of bytes that is contained in the socket address structure. The

header files required are sys/types.h and sys/socket.h. When the function returns, the number of bytes

received is returned or -1 if there is an error.

5. Sending data

sendto- sends a message from a socket

ssize_t sendto(int s, const void * buf, size_t len, int flags, const struct sockaddr * to, socklen_t

tolen);

The first parameter s is the socket descriptor of the sending socket. The second parameter buf is the array

which stores data that is to be sent. The third parameter len is the length of that data in bytes. The

 P a g e | 41

fourth parameter is the flag parameter. It is set to zero. The fifth parameter to points to a variable that

contains the destination IP address and port. The sixth parameter tolen is set to sizeof(struct sockaddr).

This function returns the number of bytes actually sent or -1 on error. The header files used are

sys/types.h and sys/socket.h.

Algorithm

Client

1. Create socket

2. Read the matrices from the standard input and send it to server using socket

3. Read product matrix from the socket and display it on the standard output

4. Close the socket

Server

1. Create socket

2. bind IP address and port number to the socket

3. Read the matrices socket from the client using socket

4. Find product of matrices

5. Send the product matrix to the client using socket

6. close the socket

Client program

import java.io.*;

import java.net.*;
class UDPCLIENT

 {

public static void main(String args[])
 {

try

 {
 DatagramSocket cds=new DatagramSocket();

 BufferedReader brc=new BufferedReader(new InputStreamReader(System.in));
while(true)

 {

 System.out.println("client send \n");
 String c=brc.readLine();

 byte [] sd=new byte[1024];

 P a g e | 42

 sd=c.getBytes();
 InetAddress addr=InetAddress.getLocalHost();

 DatagramPacket cdps=new DatagramPacket(sd,sd.length,addr,8585);
 cds.send(cdps);

 byte[] rd=new byte[1024];

 DatagramPacket cdpr=new DatagramPacket(rd,rd.length);
 cds.receive(cdpr);

 String st=new String(cdpr.getData());

 System.out.println("client received \n"+st);
 }

 }
catch (Exception e)

 {}

 }
 }
Server Program

import java.io.*;
import java.net.*;
class UDPSERVER

{
 public static void main(String args[])
 {
try

{
 DatagramSocket sds=new DatagramSocket(8585);
 BufferedReader brs=new BufferedReader(new InputStreamReader(System.in));

 byte[]rd=new byte[1024];
while(true)

 {

 DatagramPacket sdpr=new DatagramPacket(rd,rd.length);
 sds.receive(sdpr);
 String str=new String(sdpr.getData());

 System.out.println("\n server received \n" +str);
 System.out.println("\n server send \n");
 InetAddress a=sdpr.getAddress();
 int port=sdpr.getPort();

 String s=brs.readLine();
 byte[] sd=new byte[1024];
 sd=s.getBytes();
 DatagramPacket sdps=new DatagramPacket(sd,sd.length,a,port);

 sds.send(sdps);
} }
catch(Exception e)
 {}

 }
 }

 P a g e | 43

Output

Server

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain UDP Protocol

2. What is the functionality of Buffered Reader?

3. Client Socket is used for __

 P a g e | 44

Experiment No: 8 Date:

IMPLEMENTATION OF A MULTI USER CHAT SERVER USING TCP AS
TRANSPORT LAYER PROTOCOL

Aim:
To implement a chat server so that multiple users can chat simultaneously

Description

To implement chat server the select function is used. It is a function called by a process. When a process

calls this function , the process goes to sleep and wakes up only when one or more events occur or when

a specified amount of time has passed.

int select (int maxfdp1, fd_set * readset, fd_set * writeset, fd_set * exceptset, const struct timeval

* timeout);

The header files required are <sys/select.h> and <sys/time.h>

The function returns -1 on error, count of ready descriptors and 0 on timeout. If we want the kernel to

wait for as long as one descriptor becomes ready then we specify the timeout argument as a null pointer.

readset, writeset and exceptset specify the descriptors that we want the kernel to test for reading, writing

and exception conditions. select uses descriptor sets. Each set is an array of integers. Each bit in an

integer corresponds to a descriptor. In a 32 bit integer, the first element of the array represents descriptors

from 0 to 31. Second element of the array represents descriptors from 32 to 63 and so on. We have four

macros for the fd_set data type.

void FD_ZERO(fd_set * fdset); // clears all bits in fd_set

void FD_SET(int fd, fd_set * fdset); // turns on the bit for fd in fdset

void FD_CLR(int fd, fd_set * fdset); // turns off the bit for fd in fdset

int FD_ISSET(int fd, fd_set * fdset); // is the bit for fd on in fdset

Usage:
fd_set rset;

FD_ZERO(&rset); // all bits off

FD_SET(1, &rset); // turn on bit for fd 1

FD_SET(4, &rset); // turn on bit for fd 4

Initially you have to initialize the set. If we are not interested in a condition we can set tha t argument

of select to NULL, i.e; for readset, writeset or exceptset.

maxfdp1 argument specifies the number of descriptors to be tested. It is equal to value of max descriptor

to be tested plus one. This is because descriptor starts with 0. When we call select we specify the values

of the descriptors that we are interested in and on return the result indicates which descriptors are ready.

We turn on all the bits in the descriptor sets that we are interested in. On return of the call, descriptors

that are not ready will have the corresponding bit cleared in the descriptor set.

We can use select to create a server which can handle clients without forking process for each client. rset

 P a g e | 45

fd0 fd1 fd2 fd3

0 0 0 1

Maxfd + 1 = 4

Client

-1

-1

-1

-1

.

.

.

-1

Descriptors 0, 1, 2 are respectively for standard input, output and error. Next available descriptor is 3

which is set for listening socket. Client is an array that contains the connected socket descriptor for each

client. All elements are initialized to -1. The first non zero for descriptor set is that for the listening

socket. When the first client establishes a connection with the server, the listening descriptor becomes

readable and server calls accept. The new connected descriptor will be 4. The arrays are updated.

 rset

fd0 fd1 fd2 fd3 fd4

Maxfd + 1 = 5

Client

4

-1

-1

-1

.

.

.

-1

Now if a second client connects

0 0 0 1 1

 P a g e | 46

rset

fd0 fd1 fd2 fd3 fd4 fd5

Maxfd + 1 = 6

Client

4

5

-1

-1

.

.

.

-1

 If the first client terminates connection by sending a FIN segment, descriptor 4 becomes readable and

read returns 0. This socket is closed by the server and data structures are updated.

rset

fd0 fd1 fd2 fd3 fd4 fd5

Maxfd + 1 = 6

Client

The descriptor 4 in rset is set to zero. When clients arrive the connected socket descriptor

is placed in the first available entry, i.e; first entry with value equal to -1.

-1

5

-1

-1

.

.

.

-1

0 0 0 1 1 1

0 0 0 1 0 1

 P a g e | 47

Program

client

import java.io.*;

import java.net.*;
import java.util.*;

public class TCPMultiClient {

public static void main(String argv[]) throws Exception {
 String sentence;

 String modifiedSentence;

BufferedReader inFromUser =
 new BufferedReader(

 new InputStreamReader(System.in));

Socket clientSocket = new Socket("127.0.0.1", 9595);

while (true) {

 DataOutputStream outToServer =
 new DataOutputStream(

 clientSocket.getOutputStream());

BufferedReader inFromServer =

 new BufferedReader(
 new InputStreamReader(

 clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

if (sentence.equals("EXIT")) {

 break;
 }

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

}
 clientSocket.close();

 }
 }

server

import java.io.*;

import java.net.*;
import java.util.*;

import java.util.logging.*;

 P a g e | 48

public class TCPMultiServer {

public static void main(String argv[]) throws Exception {

ServerSocket welcomeSocket = new ServerSocket(9595);

Responder h = new Responder();

 // server runs for infinite time and

 // wait for clients to connect
 while (true) {

 // waiting..

 Socket connectionSocket = welcomeSocket.accept();

// on connection establishment start a new thread for each client

 // each thread shares a common responder object

 // which will be used to respond every client request

 // need to synchronize method of common object not to have unexpected behaviour//
 Thread t = new Thread(new MyServer(h, connectionSocket));

// start thread//

 t.start();

}

 }

 }

class MyServer implements Runnable {

Responder h;
 Socket connectionSocket;

public MyServer(Responder h, Socket connectionSocket) {

 this.h = h;
 this.connectionSocket = connectionSocket;

 }

@Override
 public void run() {

while (h.responderMethod(connectionSocket)) {

 try {
 // once an conversation with one client done,

 // give chance to other threads

 // so make this thread sleep//

 Thread.sleep(5000);
 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

try {

 connectionSocket.close();

 } catch (IOException ex) {

 P a g e | 49

 Logger.getLogger(MyServer.class.getName()).log(Level.SEVERE, null, ex);
 }

}

}

class Responder {

String serverSentence;

 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

// on client process termination or
 // client sends EXIT then to return false to close connection

 // else return true to keep connection alive

 // and continue conversation//

 synchronized public boolean responderMethod(Socket connectionSocket) {
 try {

BufferedReader inFromClient =new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

DataOutputStream outToClient = new DataOutputStream(connectionSocket.getOutputStream());

String clientSentence = inFromClient.readLine();

// if client process terminates it get null, so close connection//
 if (clientSentence == null || clientSentence.equals("EXIT")) {

 return false;

 }

if (clientSentence != null) {

 System.out.println("client : " + clientSentence);

 }

 serverSentence = br.readLine() + "\n";

outToClient.writeBytes(serverSentence);

return true;

} catch (SocketException e) {

 System.out.println("Disconnected");

 return false;
 } catch (Exception e) {

 e.printStackTrace();

 return false;

 }
 }

 }

Output

The server is started first. Each client then starts. The clients are numbered consecutively. If client x

wants to send message to client y, client x writes y From x: “contents of message”

 P a g e | 50

Department of Computer Science & Engineering, MESCE

The screenshots show 3 clients chatting with each other through the server running on port 5500.

Server

Client 1

 P a g e | 51

Client 2

Client 3

 P a g e | 52

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain the concept of multiple chat using TCP

2. What is the functionality of sleep option in thread

3. Server Socket is used for ______

 P a g e | 53

Experiment No:9 Date:

IMPLEMENTATION OF CONCURRENT TIME SERVER USING UDP

Aim:
To implement a concurrent time server using UDP.

Description:

A concurrent server handles multiple clients at the same time. The simplest technique for a concurrent

server is to call the Unix fork function, i.e; creating one child process for each client.

The current time and date is obtained by the library function time which returns the number of seconds

since the Unix Epoch: 00:00:00 January 1, 1970, UTC (Coordinated Universal Time). ctime is a function

that converts this integer value into a human readable string.

Algorithm:

Client

1. Create UDP socket

2. Send a request for time to the server

3. Receive the time from the server

4. Display the result

Server

1. Create a UDP socket

2. bind the port and address to the socket

3. while (1)

3.1 Receive time request from the client

3.2 create a child process using fork

If child process

3.2 .1 Use time and ctime functions to find out cuurent time

3.2 .2 Send the time as a string to the client

3.2 .3 Exit

4. end of while

 P a g e | 54

Program

Client

import socket
UDP_IP="127.0.0.1"

UDP_PORT=9797
MESSAGE="getTime"
sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

sock.sendto(MESSAGE,(UDP_IP,UDP_PORT))
data,addr=sock.recvfrom(1024)

print"Current time:",data

Server

import socket
from time import gmtime,strftime
UDP_IP="127.0.0.1"
UDP_PORT=9797

sock=socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
sock.bind((UDP_IP,UDP_PORT))
while True:
 data,addr=sock.recvfrom(1024)

if data=='getTime':
 print"received request from:",addr
time=strftime("%Y-%M-%D %H:%M:%S",gmtime())
sock.sendto(time,addr)

 P a g e | 55

Output

Server

client

 P a g e | 56

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain about concurrent time server?

2. What is the functionality of Port No?

3. IP Address is used for __

 P a g e | 57

Experiment No: 10 Date:

IMPLEMENTATION OF SIMPLE MAIL TRANSFER PROTOCOL

Aim:

To implement a subset of simple mail transfer protocol (SMTP) using UDP

Description:

SMTP provides for mail exchanges between users on the same or different computers. The SMTP client

and server can be divided into two components: user agent (UA) and mail transfer agent (MTA). The

user agent is a program used to send and receive mail. The actual mail transfer is done through mail

transfer agents. To send mail, a system must have client MTA, and to receive mail, a system must have

a server MTA. SMTP uses commands and responses to transfer messages between an MTA client and

MTA server. Commands are sent from the client to the server. It consists of a keyword followed by zero

or more arguments. Examples: HELO, MAIL FROM, RCPT TO etc. Responses are sent from the server

to the client. It is a three-digit code that may be followed by additional textual information. The process

of transferring a mail message occurs in three phases: connection establishmnet, mail transfer, and

connection termination.

Although the transport protocol specified for SMTP is TCP, in this experiment, UDP protocol will be

used.

Algorithm:

SMTP Client

1. Create the client UDP socket.

2. Send the message “SMTP REQUEST FROM CLIENT” to the server. This is done so that the

server understands the address of the client.

3. Read the first message from the server using client socket and print it.

4. The first command HELO<”Client's mail server address”> is sent by the client

5. Read the second message from the server and print it.

6. The second command MAIL FROM:<”email address of the sender”> is sent by the client.

7. Read the third message from the server and print it.

8. The third command RCPT TO:<”email address of the receiver”> is sent by the client

9. Read the fourth message from the server and print it.

 P a g e | 58

10. The fourth command DATA is sent by the client.

11. Read the fifth message from the server and print it.

12. Write the messages to the server and end with “.”

13. Read the sixth message from the server and print it.

14. The fifth command QUIT is sent by the client.

15. Read the seventh message from the server and print it.

Server

1. Create the server UDP socket

2. Read the message from the client and gets the client's address

3. Send the first command to the client.

220 “server name”

4. Read the first message from the client and print it.

5. Send the second command to the client.

250 Hello “client name”

6. Read the second message from client and print it.

7. Send the third command to the client.

250 “client email address “Sender ok

8. Read the third message from client and print it

9. Send the fourth command to the client

250 “server email address” Recepient ok

10. Read the fourth message from client and print it

11. Send the fifth command to the client

354 Enter mail, end with “.” on a line by itself

12. Read the email text from the client till a “.” is reached

13. Send the sixth command to the client

250 Message accepted for delivery

 P a g e | 59

14. Read the fifth message from the client and print it.

15. Send the seventh command to the client

221 “server name” closing connection

Program

Client

import java.io.*;
import java.net.*;

class smtpclient
{

public static void main(String args[])
{

try
{

DatagramSocket cds=new DatagramSocket();
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

while(true)
{

System.out.println("\n FROM");
String c=br.readLine();

System.out.println("\n TO");
String d=br.readLine();

System.out.println("\n CONTENT");
String e=br.readLine();

byte[] sd=new byte[20];
sd=c.getBytes();

InetAddress addr=InetAddress.getLocalHost();
DatagramPacket cdps=new DatagramPacket(sd,sd.length,addr,8989);

cds.send(cdps);
byte [] sd1=new byte[20];

sd1=d.getBytes();
InetAddress addr1=InetAddress.getLocalHost();

DatagramPacket cdps1=new DatagramPacket(sd1,sd1.length,addr1,8989);
cds.send(cdps1);

byte [] sd2=new byte[20];
sd2=e.getBytes();

InetAddress addr2=InetAddress.getLocalHost();
DatagramPacket cdps2=new DatagramPacket(sd2,sd2.length,addr2,8989);

cds.send(cdps2);
}}

catch(Exception e){}
}

}

 P a g e | 60

Server

import java.io.*;
import java.net.*;
class SMTPSERVER
{

public static void main(String args[])
{
try
{

DatagramSocket ds=new DatagramSocket(8989);
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
byte[] rd=new byte[20];
byte[] rd1=new byte[20];

byte[] rd2=new byte[20];
while(true)
{
DatagramPacket sdpr=new DatagramPacket(rd,rd.length);

ds.receive(sdpr);
String str=new String(sdpr.getData());
System.out.println("\n");
System.out.println("\n FROM:");

System.out.println(str);
DatagramPacket sdpr1=new DatagramPacket(rd1,rd1.length);
ds.receive(sdpr1);
String str1=new String(sdpr1.getData());

System.out.println("\n");
System.out.println("\n TO");
System.out.println(str1);
DatagramPacket sdpr2=new DatagramPacket(rd2,rd2.length);

ds.receive(sdpr2);
String str2=new String(sdpr2.getData());
System.out.println("\n");
System.out.println("\n CONTENT:");

System.out.println(str2);
}
}
catch(Exception e){}

}
}

 P a g e | 61

Output

Client

 P a g e | 62

Server

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain SMTP Protocol

2. What is the functionality of receive system call

3. SMTP is used for ____

 P a g e | 63

Experiment No: 11 Date:

IMPLEMENTATION OF CONCURRENT FILE SERVER

AIM

To Develop concurrent file server which will provide the file requested by client if it exists. If
not server sends appropriate message to the client. Server should also send its process ID
(PID) to clients for display along with file or the message.

ALGORITHM

Server Side:

Step 1: Start.
Step 2: Create Server Class.
Step 3: Server is listening for requests from client.

Step 4: Rrunning infinite loop for getting client request.
Step 5: Create input and out streams.
Step 6: create a new thread object.
Step 7: Create a ClientHandler class.

Step 8: Create a constructor, and read the message from client.
Step 9: write on output stream based on the answer from the client.
Step 10: Close the Resources.
Step 11: Stop.

Client Side:

Step 1: Start.

Step 2: Create Client Class.
Step 3: Establish the connection with server.
Step 4: Create input and out streams.
Step 5: Create a loop performs the exchange of information between client and client handler.

Step 6: printing date or time as requested by client
Step 7: Close the resources.
Step 8: Stop.

PROGRAM

/ Java implementation of Server side
// It contains two classes: Server and ClientHandler

// Save file as Server.java

import java.io.*;
import java.text.*;

import java.util.*;
import java.net.*;

 P a g e | 64

// Server class

public class Server
{
 public static void main(String[] args) throws IOException
 {

 // server is listening on port 5056
 ServerSocket ss = new ServerSocket(5056);

 // running infinite loop for getting

 // client request
 while (true)
 {
 Socket s = null;

 try
 {
 // socket object to receive incoming client requests

 s = ss.accept();

 System.out.println("A new client is connected : " + s);

 // obtaining input and out streams
 DataInputStream dis = new DataInputStream(s.getInputStream());
 DataOutputStream dos = new DataOutputStream(s.getOutputStream());

 System.out.println("Assigning new thread for this client");

 // create a new thread object
 Thread t = new ClientHandler(s, dis, dos);

 // Invoking the start() method
 t.start();

 }
 catch (Exception e){
 s.close();
 e.printStackTrace();

 }
 }
 }
}

// ClientHandler class
class ClientHandler extends Thread
{

 DateFormat fordate = new SimpleDateFormat("yyyy/MM/dd");
 DateFormat fortime = new SimpleDateFormat("hh:mm:ss");
 final DataInputStream dis;
 final DataOutputStream dos;

 final Socket s;

 // Constructor

 public ClientHandler(Socket s, DataInputStream dis, DataOutputStream dos)

 P a g e | 65

 {

 this.s = s;
 this.dis = dis;
 this.dos = dos;
 }

 @Override
 public void run()
 {

 String received;
 String toreturn;
 while (true)
 {

 try {

 // Ask user what he wants
 dos.writeUTF("What do you want?[Date | Time]..\n"+

 "Type Exit to terminate connection.");

 // receive the answer from client
 received = dis.readUTF();

 if(received.equals("Exit"))
 {
 System.out.println("Client " + this.s + " sends exit...");

 System.out.println("Closing this connection.");
 this.s.close();
 System.out.println("Connection closed");
 break;

 }

 // creating Date object
 Date date = new Date();

 // write on output stream based on the
 // answer from the client
 switch (received) {

 case "Date" :
 toreturn = fordate.format(date);
 dos.writeUTF(toreturn);

 break;

 case "Time" :
 toreturn = fortime.format(date);

 dos.writeUTF(toreturn);
 break;

 default:

 dos.writeUTF("Invalid input");
 break;
 }
 } catch (IOException e) {

 e.printStackTrace();

 P a g e | 66

 }

 }

 try
 {

 // closing resources
 this.dis.close();
 this.dos.close();

 }catch(IOException e){
 e.printStackTrace();
 }
 }

}

// Java implementation for a client
// Save file as Client.java

import java.io.*;
import java.net.*;
import java.util.Scanner;

// Client class
public class Client
{

 public static void main(String[] args) throws IOException
 {
 try
 {

 Scanner scn = new Scanner(System.in);

 // getting localhost ip
 InetAddress ip = InetAddress.getByName("localhost");

 // establish the connection with server port 5056
 Socket s = new Socket(ip, 5056);

 // obtaining input and out streams
 DataInputStream dis = new DataInputStream(s.getInputStream());
 DataOutputStream dos = new DataOutputStream(s.getOutputStream());

 // the following loop performs the exchange of
 // information between client and client handler
 while (true)
 {

 System.out.println(dis.readUTF());
 String tosend = scn.nextLine();
 dos.writeUTF(tosend);

 // loop performs the exchange of
 // information between client and client handler
 if(tosend.equals("Exit"))
 {

 P a g e | 67

 System.out.println("Closing this connection : " + s);

 s.close();
 System.out.println("Connection closed");
 break;
 }

 // printing date or time as requested by client
 String received = dis.readUTF();
 System.out.println(received);

 }

 // closing resources
 scn.close();

 dis.close();
 dos.close();
 }catch(Exception e){
 e.printStackTrace();

 }
 }
}

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. Explain the functionality of scanner class?

2. What is the functionality of close system call

3. File Server is used for ______

 P a g e | 68

Experiment No: 12 Date:

DESIGN AND CONFIGURATION OF NETWORK AND

SERVICES

AIM
To Design and configure a network with multiple subnets with wired and wireless LANs using required
network devices. Configure the following services in the network- TELNET, SSH, FTP server, Web
server, File server, DHCP server and DNS server.

ALGORITHM
Step 1: Start.
Step2: Fixing the co-ordinate of simutaion area.
Step 3: set up topography object
Step 4: Tracing all the events and configuration

Step 5: general operational descriptor- storing the hop details in the network.
Step 6: Node Creation
Step 7: Location fixing for a single node
PROGRAM

Wireless scenario:
#Filename: sample1.tcl
#TCL – Tool Command Language
Simulator Instance Creation

set ns [new Simulator]

#Fixing the co-ordinate of simutaion area
set val(x) 500

set val(y) 500

Define options
set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set val(nn) 2 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol
set val(x) 500 ;# X dimension of topography
set val(y) 400 ;# Y dimension of topography
set val(stop) 10.0 ;# time of simulation end

set up topography object
set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

#Nam File Creation nam – network animator
set namfile [open sample1.nam w]

 P a g e | 69

#Tracing all the events and cofiguration

$ns namtrace-all-wireless $namfile $val(x) $val(y)
#Trace File creation
set tracefile [open sample1.tr w]

#Tracing all the events and cofiguration
$ns trace-all $tracefile

general operational descriptor- storing the hop details in the network

create-god $val(nn)

configure the nodes
$ns node-config -adhocRouting $val(rp) \

-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \

-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \

-topoInstance $topo \
-agentTrace ON \
-routerTrace ON \
-macTrace OFF \

-movementTrace ON

Node Creation
set node1 [$ns node]

Initial color of the node
$node1 color black

#Location fixing for a single node
$node1 set X_ 200
$node1 set Y_ 100
$node1 set Z_ 0

set node2 [$ns node]
$node2 color black
$node2 set X_ 200
$node2 set Y_ 300

$node2 set Z_ 0

Label and coloring
$ns at 0.1 "$node1 color blue"

$ns at 0.1 "$node1 label Node1"
$ns at 0.1 "$node2 label Node2"

#Size of the node

$ns initial_node_pos $node1 30
$ns initial_node_pos $node2 30

ending nam and the simulation

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

 P a g e | 70

$ns at $val(stop) "stop"

#Stopping the scheduler
$ns at 10.01 "puts \"end simulation\" ; $ns halt"

#$ns at 10.01 "$ns halt"
proc stop {} {
global namfile tracefile ns
$ns flush-trace

close $namfile
close $tracefile

#executing nam file

exec nam sample1.nam &
}

#Starting scheduler

$ns run

Execution:

ns sample1.tcl

Wired Network:
Filename: test1.tcl

#——-Event scheduler object creation——–#
set ns [new Simulator]
#———-creating trace objects—————-#
set nt [open test1.tr w]

$ns trace-all $nt
#———-creating nam objects—————-#
set nf [open test1.nam w]
$ns namtrace-all $nf

#———-Setting color ID—————-#
$ns color 1 darkmagenta
$ns color 2 yellow
$ns color 3 blue

$ns color 4 green
$ns color 5 black

#———- Creating Network—————-#

set totalNodes 3
for {set i 0} {$i < $totalNodes} {incr i} {
set node_($i) [$ns node]
}

set server 0
set router 1
set client 2
#———- Creating Duplex Link—————-#

$ns duplex-link $node_($server) $node_($router) 2Mb 50ms DropTail
$ns duplex-link $node_($router) $node_($client) 2Mb 50ms DropTail
$ns duplex-link-op $node_($server) $node_($router) orient right
$ns duplex-link-op $node_($router) $node_($client) orient right

#————Labelling—————-#

 P a g e | 71

$ns at 0.0 "$node_($server) label Server"

$ns at 0.0 "$node_($router) label Router"
$ns at 0.0 "$node_($client) label Client"
$ns at 0.0 "$node_($server) color blue"

$ns at 0.0 "$node_($client) color blue"
$node_($server) shape hexagon
$node_($client) shape hexagon
#———finish procedure——–#

proc finish {} {
global ns nf nt
$ns flush-trace
close $nf

close $nt
puts "running nam…"
exec nam test1.nam &
exit 0

}
#Calling finish procedure
$ns at 10.0 "finish"
$ns run

#——— Execution ——–#
ns test2.tcl

Result & Discussion

Program is executed successfully and output is obtained

Viva Questions:

1. NS2 stands for _______

2. What is the functionality of DHCP Server

3. SSH Stands for ____

